Uncertainty metrics =================== This module constains all general-purpose uncertainty metrics used by models in the repository. An uncertainty metric quantified the uncertainty of a model in its prediction, where higher values of the metric indicate a higher uncertainty. Uncertainty metrics take the unnormalized logits of a model as an input. Some metrics might not be included here, since they are model-specified, see for instance :py:meth:`nlp_uncertainty_zoo.models.ddu_transformer.DDUMixin.gmm_predict`, which becomes the `log_prob` metric for :py:class:`nlp_uncertainty_zoo.models.ddu_transformer.DDUTransformer` and :py:class:`nlp_uncertainty_zoo.models.ddu_transformer.DDUBert`. Metric Module Documentation =========================== .. automodule:: nlp_uncertainty_zoo.utils.metrics :members: :show-inheritance: :undoc-members: